校庆学术报告----数学(二)
发布时间: 2018-10-25  浏览次数: 10

  Stable Sets and Chaos in Positive Entropy Systems

报告人教授(中国科学技术大学)

  20181029日(周一)下午3:40-4:30

  :励学楼 B219

  In this talk, I will present the chaotic phenomenon of a dynamical system with positive entropy. It is shown that a dynamical system has positive entropy if and only if it has a weak horseshoe. Particularly, I will show that a Lorentz attractor has a weak horseshoe. Moreover, I will present the Hausdorff dimension and the chaotic behavior of stable sets and unstable sets in a C1-diffeomorphism system with positive entropy. The lower bound of the Hausdorff dimension of these stable sets and unstable sets is given in terms of the metric entropy and the largest Lyapunov exponent.

报告人简介: 中国科学技术大学教授,博士生导师。2003年在中国科学技术大学数学系获得理学博士学位,从事拓扑动力系统与遍历理论,及其在数论、微分方程方面的应用。近年在熵与混沌理论、多重回复性与多重遍历定理、零熵系统不变量及Sarnak猜测方面取得进展,证明正熵蕴含弱马蹄、Distal情形的逐点多重遍历定理、次多项式测度复杂度系统满足Sarnak猜测,以及多重回复时间集是几乎幂零系统序列。相关工作发表在

Communications on Pure and Applied Mathematics,

Memoirs of the American Mathematical Society,

Advances in Mathematics,

Communications in Mathematical Physics,

Archive for Rational Mechanics and Analysis,

Annals of Probability,

Transactions of the American Mathematical Society , 

Journal de Mathématiques Pures et Appliqués,

Journal of  Functional Analysis ,

Ergodic Theory and Dynamical Systems

等期刊,2012年获得国家自然科学杰出青年基金,2016年入选科技部中青年科技创新领军人才,2018年入选第三批万人计划领军人才。

                      欢迎广大师生参加!